A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs
نویسندگان
چکیده
A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTP. The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP applications. To this end, a methodology based on model simulations is used that employs three statistical methods: (i) Monte-Carlo procedure: to find proper initial conditions, (ii) Identifiability analysis: to find an identifiable parameter subset of the fuzzy controller and (iii) minimization algorithm: to fine-tune the identifiable parameter subset of the controller. Indeed, the initial location found by Monte-Carlo simulations provided better results than using trial and error approach when identifying parameters of the fuzzy controller. The identifiable subset was reduced to 4 parameters from a total of 33, which improved the quality of the optimization of the control system by a minimization algorithm. Overall the systematic approach considerably improved the performance of the control system as measured by the Integral Absolute Error (deviation between the set-point and the controlled variable) of the controllers. Moreover, the methodology overcomes the dependency of the initial parameter space issue typical of local identifiability analysis. All in all this systematic approach is expected to facilitate the design and application of fuzzy controllers in particular to WWTPs compared to the time-consuming and tedious trial and error approach currently used in practice. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Manipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کاملSelf-tuning of Fuzzy Logic Controllers in Cascade Loops
Cascade control is a multi-loop control scheme commonly used in chemical plants. But, as the involved processes are in general complex, with delays and non-linearities, conventional control methods are not able to guarantee the final control aims. Fuzzy Control (FLC) has been successful applied to these applications. However, controller parameters adjustment is a critical point and in Fuzzy Con...
متن کاملDecentralized Fuzzy-PID Based Control Model for a Multivariable Liquid Level System
Multivariable liquid level control is essential in process industries to ensure quality of the product and safety of the equipment. However, the significant problems of the control system include excessive time consumption and percentage overshoot, which result from ineffective performance of the tuning methods of the PID controllers used for the system. In this paper, fuzzy logic was used to t...
متن کاملTuning Of Fuzzy PID Controllers
Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equiva...
متن کاملTuning Fuzzy PID Controllers
After the development of fuzzy logic, an important application of it was developed in control systems and it is known as fuzzy PID controllers. They represent interest in order to be applied in practical applications instead of the linear PID controllers, in the feedback control of a variety of processes, due to their advantages imposed by the non-linear behavior. The design of fuzzy PID contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 25 شماره
صفحات -
تاریخ انتشار 2010